SWR ( Standing Wave Ratio )

 
SWR adalah singkatan dari Standing Wave Ratio, kadang-kadang disebut dengan nama VSWR (Voltage Standing Wave Ratio). Bila impedansi pada kabel koaksial tidak sesuai dengan transceiver maka akan timbul daya refleksi (reflected power) pada kabel yang berinterferensi dengan daya maju (forward power). Interferensi ini menghasilkan gelombang berdiri (standing wave) yang besarnya tergantung pada besarnya daya refleksi.


alat untuk mengukur SWR disebut SWR meter, kadang kadang bersatu dengan Power Meter.


ini gambar SWR / Power Meter....


rumus perhitungan SWR adalah sebagai berikut :
dimana Vf adalah voltase daya maju ( forward ) sedangkan Vr adalah Voltase daya pantul ( reflected )


rasio yang diharapkan, tentunya 1:1, artinya energi yang di keluarkan seluruhnya akan tersalur ke antenna


cara mengukur SWR adalah sebagai berikut :


1. Siapkan SWR meter dan jumper kabel ( kabel pendek ) yang telah dipasang  konektor di kedua ujungnya.
2. Cabut konektor kabel koaksial ke antenna dari transceiver, lalu sambung ke SWR meter yang bertuliskan ANT, sementara kabel jumper dipasang di tulisan TX pada SWR meter dan disambung ke konektor antenna pada transceiver.
3. Switch pada SWR meter dipasang di FWD, lalu pencet PTT mic beberapa saat, lihat jarum penunjuk pada meter terus lakukan putaran pada CAL sampai jarum pas di ujung.
4. Sambil terus memencet PTT pada mic, geser switch di SWR meter ke REF ( pd beberapa merek pada posisi SWR ) dan jarum akan menunjukkan nilai SWR pada antenna tersebut.


perlu diperhatikan, karena test tsb akan memancarkan sinyal, maka sebelum melakukan hal diatas mohon di cek dulu,apakah frekuensi tersebut sedang dipergunakan ????


lalu, apakah memasang SWR meter di dekat TX dibanding dekat antenna akan memberikan hitungan berbeda???


ya....terutama kalau kabel yang dipergunakan sangat panjang ( lebih dari 20 meter )......jadi sebaiknya pada kasus ini pengukuran dilakukan di dekat antenna agar nilai SWR yang terukur lebih akurat.


juga agar diperhatikan, SWR meter yang digunakan harus sesuai dengan frekuensi TX yang akan diukur ( artinya.........SWR untuk HF tidak bisa dipakai mengukur VHF / 2 meter , juga sebaliknya..........)

PABX





PABX atau Private Automatic Branch eXchange
           adalah perangkat penyambungan komunikasi telepon yang terletak di sisi pelanggan, misalnya di gedung-gedung perkantoran yang memerlukan percabangan sambungan telepon. Secara umum perangkat PABX terhubung ke penyedia layanan telekomunikasi publik.
Ukuran atau parameter PABX dalam kapasitas jumlah line telkom yang tersambung ke PABX dan jumlah Extention ( cabang ).Mulai yang kapasitas satuan,puluhan,ratusan maupun ribuan Ext.
Saat ini, PABX telah mengaplikasikan teknologi Internet Protocol (IP) sehingga disebut IP PBX.
Pembahasan mengenai PABX dapat di bagi menjadi :
  
Pengertian PABX
        PABX atau sering kepanjangan dari Private automatic Branch eXchange adalah suatu perangkat yang berfungsi sebagai sentral telepon, dalam suatu lokasi tertentu, misalnya : kantor, gedung, perumahan, dll. Dalam skala kapasitas yang lebih besar, PABX dapat berupa Sentral Telepon Otomatis PSTN yang digunakan oleh operator telepon besar untuk layanan kerumah, kantor dan lain-lain, misalnya PT. TELKOM, PT. INDOSAT, PT.TELKOMSEL,PT.BAKRI dll.
Perangkat ini akan mengatur panggilan yang masuk serta meneruskan panggilan ke nomor tujuannya, sehingga pengguna dapat dengan mudah melakukan penggilan ke nomer tujuan, cukup dengan menekan nomor tujuan nya (nomor extension atau nomer rumah).
  
Type dan Jenis PABX
PABX DIGITAL
          adalah PABX yang mempergunakan pesawat digital untuk extensionnya, Pesawat digital ini umumnya telah mendukung beberapa fitur seperti Conference Call,Party,dsb. memilki tombol-tombol line / Flexsibel buton, pesawat digital hanya bisa digunakan / dipasangkan dengan PABX yang sama dengan merk/type pesawat digital itu sendiri.
PABX ANALOG
          adalah PABX yang hanya mendukung pesawat telp biasa (seperti telepon    rumah) kebalikan dari PABX Digital, umumnya fiturnya sangat sederhana.
PABX Hybrid
         adalah PABX yang bisa menggunakan Telp Digital dan Analog pada port-Extensionnya.
  
Bagian PABX
Cabinet Rack
Power Supply
Extention Card
Trunk Card
Option Card
dll

Fitur dan layanan PABX

Automatic Route Selection
Account Code
Absen Message
Back Ground Music
Budget Management
Busy On Busy
Class Of Service
Call Park
Call Forward
Call Transfer
Call Pick Up
Data Line Security
Delayed Ringing
Ext Lock
Emergency Call
External BGM
Flexible Numbering
Greeting Message
Hunting Groups
Incoming Groups
Hunting Groups
Line Monitor
Manager Function
Paging Groups
SMDR 

Interkoneksi PABX
         Pengertian interkoneksi pabx adalah, gabungan 2 atau lebih pabx menjadi satu system kesatuan. Fungsinya untuk penghematan biaya, contohnya jika sebuah perusahaan memiliki kantor pusat dan cabang, yang mungkin cabang - cabang tersebut berada jauh di luar kota bahkan luar negri sekalipun. Dengan di satukannya system pabx, maka untuk menghubungi cabang melalui telpon tidak memerlukan biaya pulsa, cukup komunikasi internal saja. 

Merk Dan Type PABX
Panasonic :
- A Series
- HB Series
- HT Series
- TA Series
- VB9 Series
- TDN Series
- XH Series
- TDA Series
- TDE Series
- DBS Series 

Accesories PABX - Peralatan Pendukung
Automatic Attendant
PABX Software Billing System
Main Distribution Frame

Macam-macam Antena

Antena



ilustrasi by google
ilustrasi by google
Sekarang ini saya sedang mencoba belajar tentang jaringan nirkabel dan salah satu komponen yang mesti kita pahami diantaranya adalah antena.
Apakah Antena itu? Secara sederhana, antena adalah alat untuk mengirim dan menerima gelombang elektromagnetik, bergantung kepada pemakaian dan penggunaan frekuensinya, antena bisa berwujud berbagai bentuk, mulai dari seutas kabel, dipole, ataupun yagi, dsb. Antena adalah alat pasif tanpa catu daya(power), yang tidak bisa meningkatkan kekuatan sinyal radio, dia seperti reflektor pada lampu senter, membantu mengkonsentrasi dan memfokuskan sinyal.
Kekuatan dalam mengkonsentrasi dan memfokuskan sinyal radio, satuan ukurnya adalah dB. Jadi ketika dB bertambah, maka jangkauan jarak yang bisa ditempuhpun bertambah. Jenis antena yang akan dipasang harus sesuai dengan sistem yang akan kita bangun, juga disesuaikan dengan kebutuhan penyebaran sinyalnya. Secara umum ada dua jenis antena yaitu :
1. Directional
2. Omni Directional
Fungsi
Fungsi antena adalah untuk mengubah sinyal listrik menjadi sinyal elektromagnetik, lalu meradiasikannya (Pelepasan energy elektromagnetik ke udara / ruang bebas). Dan sebaliknya, antena juga dapat berfungsi untuk menerima sinyal elektromagnetik (Penerima energy elektromagnetik dari ruang bebas ) dan mengubahnya menjadi sinyal listrik. Pada radar atau sistem komunikasi satelit, sering dijumpai sebuah antena yang melakukan kedua fungsi (peradiasi dan penerima) sekaligus. Namun, pada sebuah teleskop radio, antena hanya menjalankan fungsi penerima saja.
Karakter antena
Ada beberapa karakter penting antena yang perlu dipertimbangkan dalam memilih jenis antena untuk suatu aplikasi (termasuk untuk digunakan pada sebuah teleskop radio), yaitu pola radiasi, directivity, gain, dan polarisasi. Karakter-karakter ini umumnya sama pada sebuah antena, baik ketika antena tersebut menjadi peradiasi atau menjadi penerima, untuk suatu frekuensi, polarisasi, dan bidang irisan tertentu. Misalnya, David Welkinson (0806322514) ingin membeli antena maka untuk mendapatkan antena yang sesuai dengan fungsi yang dinginkan, ia harus memimilih antena dengan karakter yang sesuai dengan fungsi yang dia inginkan.

· Pola radiasi
Pola radiasi antena adalah plot 3-dimensi distribusi sinyal yang dipancarkan oleh sebuah antena, atau plot 3-dimensi tingkat penerimaan sinyal yang diterima oleh sebuah antena. Pola radiasiantena dibentuk oleh dua buah pola radiasi berdasar bidang irisan, yaitu pola radiasi pada bidang irisan arah elevasi (pola elevasi) dan pola radiasi pada bidang irisan arah azimuth (pola azimuth).
Kedua pola di atas akan membentuk pola 3-dimensi. Pola radiasi 3-dimensi inilah yang umum disebut sebagai pola radiasi antena dipol. Sebuah antena yang meradiasikan sinyalnya sama besar ke segala arah disebut sebagai antena isotropis. Antena seperti ini akan memiliki pola radiasi berbentuk bola Namun, jika sebuah antena memiliki arah tertentu, di mana pada arah tersebut distribusi sinyalnya lebih besar dibandingkan pada arah lain, maka antena ini akan memiliki directivity Semakin spesifik arah distribusi sinyal oleh sebuah antena, maka directivity antena tersebut.
Antena dipol termasuk non-directive antenna. Dengan karakter seperti ini, antena dipol banyak dimanfaatkan untuk sistem komunikasi dengan wilayah cakupan yang luas. Pada astronomi radio, antena dipol digunakan pada teleskop radio untuk melakukan pengamatan pada rentang High Frekuensi (HF). Bentuk data yang dapat diperoleh adalah variabilitas intensitas sinyal yang dipancarkan oleh sebuah objek astronomi. Namun, karena antena dipol tidak memiliki directivity pada arah tertentu, teleskop radio elemen tunggal yang menggunakan antena jenis ini tidak dapat digunakan untuk melakukan pencitraan.

· Gain
Gain (directive gain) adalah karakter antena yang terkait dengan kemampuan antena mengarahkan radiasi sinyalnya, atau penerimaan sinyal dari arah tertentu. Gain bukanlah kuantitas yang dapat diukur dalam satuan fisis pada umumnya seperti watt, ohm, atau lainnya, melainkan suatu bentuk perbandingan. Oleh karena itu, satuan yang digunakan untuk gain adalah desibel.

· Polarisasi
Polarisasi didefinisikan sebagai arah rambat dari medan listrik. Antena dipol memiliki polarisasi linear vertikal . Mengenali polarisasi antena amat berguna dalam sistem komunikasi, khususnya untuk mendapatkan efisiensi maksimum pada transmisi sinyal. Pada astronomi radio, tujuan mengenali polarisasi sinyal yang dipancarkan oleh sebuah objek astronomi adalah untuk mempelajari medan magnetik dari objek tersebut.
Ada beberapa hal yang perlu diperhatikan dalam pola radiasi, yang pertama adalah Half-power Beamwidth (HPBW), atau yang biasa dikenal sebagai beanwidth suatu antena. Dalam astronomi radio, beamwidth adalah resolusi spasial dari sebuah teleskop radio, yaitu diameter sudut minimun dari dua buah titik yang mampu dipisahkan oleh teleskop radio tersebut. Secara teori, beamwidth untuk antena yang berbentuk parabola dapat ditentukan.
Antena Directional
Antena jenis ini merupakan jenis antena dengan narrow beamwidth, yaitu punya sudut pemancaran yang kecil dengan daya lebih terarah, jaraknya jauh dan tidak bisa menjangkau area yang luas, antena directional mengirim dan menerima sinyal radio hanya pada satu arah, umumnya pada fokus yang sangat sempit, dan biasanya digunakan untuk koneksi point to point, atau multiple point, macam antena direktional seperti antena grid, dish “parabolic”, yagi, dan antena sectoral.
Antena Omni-Directional
Antena ini mempunyai sudut pancaran yang besar (wide beamwidth) yaitu 3600; dengan daya lebih meluas, jarak yang lebih pendek tetapi dapat melayani area yang luas Omni antena tidak dianjurkan pemakaian-nya, karena sifatnya yang terlalu luas se-hingga ada kemungkinan mengumpulkan sinyal lain yang akan menyebabkan inter-ferensi. antena omnidirectional mengirim atau menerima sinyal radio dari semua arah secara sama, biasanya digunakan untuk koneksi multiple point atau hotspot.
Type Antena
1. Antena Omnidirectional



Sebuah antena Omnidirectional adalah antena daya sistem yang memancar secara seragam dalam satu pesawat dengan bentuk pola arahan dalam bidang tegak lurus. This pattern is often described as “donut shaped”. Pola ini sering digambarkan sebagai “donat berbentuk”. Omnidirectional antenna can be used to link multiple directional antenna in outdoor point-to-multipoint communication systems including cellular phone connections and TV broadcasts. Antena Omnidirectional dapat digunakan untuk menghubungkan beberapa antena directional di outdoor point-to-multipoint komunikasi systems termasuk sambungan telepon selular dan siaran TV.
Antena omni mempunyai sifat umum radiasi atau pancaran sinyal 360-derajat yang tegak lurus ke atas. Omnidirectional antena secara normal mempunyai gain sekitar 3-12 dBi. Yang digunakan untuk hubungan Point-To-Multi-Point ( P2Mp) atau stu titik ke banyak titik di sekitar daerah pancaran. Yang baik bekerja dari jarak 1-5 km, akan menguntungkan jika client atau penerima menggunalan directional antenna atau antenna yang ter arah.Yang ditunjukkan di bawah adalah pola pancaran khas RFDG 140 omnidirectional antena. Radiasi yang horisontal dengan pancaran 360-derjat. Radiasi yang horisontal pada dasarnya E-Field.yang berbeda dengan, polarisasi yang vertikal adalah sangat membatasi potongan sinyal yang di pancarkan. Antena ini akan melayani atau hanya memberi pancaran sinyal pada sekelilingnya atau 360 derjat, sedamgkan pada bagian atas antena tidak memiliki sinyal radiasi.
Pola radiasi dari antenna Omni
2. Antena Grid
Contoh antena grid
Contoh antena grid


Antena ini merupakan salah satu antena wifi yang populer. Sudut pola pancaran antena ini lebih fokus pada titik tertentu sesuai pemasangannya.
3. Antena Parabolik
- Dipakai untuk jarak menengah atau jarak jauh
- Gain-nya bisa antara 18 sampai 28 dBi

Contoh antena parabolic


Pola radiasi dari antena Parabolik



Kelebihan antenna parabola
  • Dapat digunakan untuk menerima 3 satellite sekaligus tanpa harus menggerakkan antenna.
  • Dapat menampilkan gambar dari semua TV dari satelit yang ditangkap dalam sekejap.
  • Kondisi permanent sehingga tidak gampang goyah terhadap posisi.
  • Signal quality dapat maksimum
Kekurangan antenna parabola
  • Tidak dapat digunakan menangkap satelit lebih dari 5
  • Membutuhkan lebih banyak LNBF
  • Channel yang diterima lebih sedikit
4. Antena Sectoral
Antena Sectoral hampir mirip dengan antena omnidirectional. Yang juga digunakan untuk Access Point to serve a Point-to-Multi-Point (P2MP) links. Beberapa antenna sectoral dibuat tegak lurus , dan ada juga yang horizontal.
Antena sectoral mempunyai gain jauh lebih tinggi dibanding omnidirectional antena di sekitar 10-19 dBi. Yang bekerja pada jarak atau area 6-8 km. Sudut pancaran antenna ini adalah 45-180 derajat dan tingkat ketinggian pemasangannya harus diperhatikan agar tidak terdapat kerugian dalam penangkapan sinyal.
Pola pancaran yang horisontal kebanyakan memancar ke arah mana antenna ini di arahkan sesuai dengan jangkauan dari derajat pancarannya, sedangkan pada bagian belakang antenna tidak memiliki sinyal pancaran.
Antenna sectoral ini jika di pasang lebih tinggi akan menguntungkan penerimaan yang baik pada suatu sector atau wilayah pancaran yang telah di tentukan.


Pola radiasi dari antena Sektoral
Artikel ini dibuat dari berbagai sumber,dan saya coba definisikan,mudah mudahan artikel ini dapat bermanfaat buat para pembaca.

Komponen Dasar

Kristal



KristalKristal lazimnya digunakan untuk rangkaian osilator yang menuntut stabilitas frekuensi yang tinggi dalam jangka waktu yang panjang. Alasan utamanya adalah karena perubahan nilai frekuensi kristal seiring dengan waktu, atau disebut juga dengan istilah faktor penuaan frekuensi (frequency aging), jauh lebih kecil dari pada osilator-osilator lain. Faktor penuaan frekuensi untuk kristal berkisar pada angka ±5ppm/tahun, jauh lebih baik dari pada faktor penuaan frekuensi osilator RC ataupun osilator LC yang biasanya berada diatas ±1%/tahun.
Simbol KristalSimbol KristalKristal juga mempunyai stabilitas suhu yang sangat bagus. Lazimnya, nilai koefisien suhu kristal berada dikisaran ±50ppm direntangan suhu operasi normal dari -20°C sampai dengan +70°C. Bandingkan dengan koefisien suhu kapasitor yang bisa mencapai beberapa persen. Untuk aplikasi yang menuntut stabilitas suhu yang lebih tinggi, kristal dapat dioperasikan didalam sebuah oven kecil yang dijaga agar suhunya selalu konstan.

Tatanan Fisik

Material yang mempunyai bentuk struktur kristalin, seperti quartz, mempunyai satu sifat unik yaitu mampu menghasilkan tegangan listrik ketika diberi tekanan mekanikal dan juga sebaliknya, berubah bentuk mekanikalnya ketika diberi tegangan listrik. Sifat ini dikenal dengan nama efek piezo-electric.
Sifat inilah yang dimanfaatkan untuk menghasilkan resonansi listrik-mekanik, sehingga kristal akan bergetar pada frekuensi alami tertentu jika diberi tegangan listrik bolak-balik. Frekuensi alami ini ditentukan oleh potongan dan dimensi keping kristal, yang ditetapkan pada saat pembuatan.
Karena potongan dan dimensi keping kristal dapat dikontrol secara presisi pada saat proses produksi, maka kristal mempunyai frekuensi getar alami yang sangat akurat. Akurasi kristal umumnya berada pada kisaran ±30ppm, dengan akurasi yang lebih tinggi juga tersedia walaupun harganya tentu lebih mahal.
Potongan keping kristal mengacu kepada orientasi sudut pemotongan keping kristal terhadap garis struktur kristalin, dan juga bentuk keping kristal tersebut. Ada banyak standar potongan keping kristal, yang masing-masing mempunyai karakteristik yang berbeda-beda. Sebagai contoh, potongan AT yang populer mempunyai frekuensi fundamental maksimum yang tidak terlalu tinggi dan koefisien suhu yang cukup baik (berbentuk kurva fungsi kubik). Contoh lain adalah potongan BT, yang mempunyai frekuensi fundamental maksimum yang lebih tinggi tetapi koefisien suhunya lebih buruk (berbentuk kurva parabolik).
Kristal dapat dioperasikan pada frekuensi fundamental atau salah satu dari frekuensi-frekuensi harmonik ganjil (odd harmonics) yang biasa disebut dengan istilah overtones. Frekuensi fundamental maksimum sebuah kristal ditentukan oleh potongan dan dimensi keping kristal. Semakin tinggi frekuensi fundamental sebuah kristal, semakin tipis keping kristal tersebut, sehingga keping kristal menjadi rapuh dan mudah patah. Jadi untuk mencapai spesifikasi frekuensi getar yang lebih tinggi, kristal harus beroperasi menggunakan salah satu overtone yang ada.
Walaupun quartz adalah material yang paling sering digunakan untuk membuat kristal, material lain seperti lithium-niobate, lithium-tantalate, bismuth-germanium oxide dan alumimium-phosphate juga dapat dipakai untuk membuat kristal. Material lain yang juga dapat digunakan adalah sejenis keramik yang terbuat dari padatan timbal, zirconium dan titanium dan material polimer seperti polyvinyl chloride dan difluorpolyethylene.

Rangkaian Ekuivalen

Rangkaian Ekuivalen KristalRangkaian Ekuivalen KristalDari sudut pandang bidang elektronika, tata kerja kristal dapat diilustrasikan melalui rangkaian ekuivalen yang terdiri dari dua buah kapasitor, satu buah induktor dan satu buah resistor.
Induktor L1 (motional inductance) adalah padanan dari massa keping kristal yang bergetar, kapasitor C1 (motional capacitance) adalah padanan dari kekakuan keping kristal melawan getaran dan resistor R1 adalah padanan dari energi yang hilang diserap oleh kristal karena bentuknya mengalami perubahan ketika bergetar. Kapasitor C0 (shunt capacitor) adalah kapasitansi yang terbentuk diantara dua elektroda yang mengapit potongan kristal.
Frekuensi getar alami kristal diberikan oleh persamaan berikut:
Persamaan Frekuensi Getar AlamiUmumnya, nilai induktansi L1 adalah sangat tinggi sementara nilai kapasitansi C1 sangat rendah. Sebagai contoh, sebuah kristal yang mempunyai frekuensi getar 10MHz mempunyai nilai L1 = 0.05H, C1 = 0.0051pF, R1 = 5Ω dan C0 = 6pF.
Rasio antara nilai induktansi L1 dan kapasitansi C1 yang sangat besar, jauh melampaui nilai rasio yang lazim didapat jika menggunakan komponen biasa, sehingga nilai faktor kualitas (Q) dari kristal menjadi jauh lebih tinggi daripada rangkaian LC biasa.
Faktor kualitas sebuah kristal diberikan oleh persamaan berikut:
Persamaan Faktor KualitasNilai faktor kualitas kristal umumnya bekisar diantara 104 sampai dengan 106, bandingkan dengan nilai faktor-kualitas rangkaian LC biasa yang hanya berkisar diangka ratusan.
Kristal dapat diterapkan pada rangkaian resonansi-seri ataupun resonansi-paralel. Pada rangkaian resonansi-seri, kristal bersifat seolah-olah terdiri dari sebuah kapasitor dan sebuah induktor yang dirangkai secara seri. Impedansi kristal akan mencapai nilai terendah, yaitu sama dengan nilai tahanan R1, pada frekuensi getar alami.
Pada rangkaian resonansi-paralel, kristal bersifat seperti terdiri dari sebuah kapasitor dan sebuah induktor yang dirangkai secara paralel. Impedansi kristal akan mencapai nilai tertinggi pada frekuensi getar alami. Perlu dicatat bahwa frekuensi getar alami sebuah kristal yang sama jika beroperasi secara resonansi-paralel adalah sedikit lebih tinggi daripada ketika dioperasikan secara resonansi-seri. Fenomena ini dikenal dengan istilah pulling, yang besarannya tergantung kepada rasio dari C1 dengan C0 dan CL.
Besarnya perubahan frekuensi yang disebabkan oleh faktor pulling ini diberikan oleh persamaan berikut:
Persamaan Faktor PullingKristal biasanya dibentuk sedemikian rupa sehingga lebih optimal jika dioperasikan pada salah satu mode tertentu, baik itu secara resonansi-seri ataupun resonansi-paralel.

Aplikasi Kristal

Osilator ColpittsOsilator ColpittsKristal dapat digunakan sebagai pengganti jajaran resonansi LC untuk hampir semua jenis rangkaian osilator, baik secara resonansi-seri maupun resonansi-paralel. Sebagai contoh adalah rangkaian osilator Colpitts yang menggunakan jajaran kristal dan kapasitor secara resonansi-seri.
Osilator PierceOsilator PierceSatu contoh lain adalah rangkaian osilator Pierce yang menggunakan jajaran kristal dan kapasitor secara resonansi-paralel pada jalur umpan-balik. Osilator Pierce ini sangat populer dan kerap digunakan karena mempunyai karakteristik stabilitas yang lebih superior dibandingkan dengan rangkaian osilator lainnya.
Osilator CMOS InverterOsilator CMOSRangkaian osilator populer lain menggunakan sebuah CMOS inverter yang menerapkan kristal pada jalur umpan-balik dari kaki output ke kaki input. Osilator ini mempunyai prinsip kerja yang serupa dengan osilator Pierce.
Rangkaian osilator klasik ini diterapkan secara luas sebagai sumber frekuensi denyut (clock frequency) pada rangkaian digital dan juga menjadi dasar cara kerja rangkaian osilator terpadu yang biasa digunakan oleh mikrokontroler.
Kedua kapasitor yang terhubung dari kaki-kaki kristal ke ground adalah kapasitor beban (load capacitance) yang perlu untuk berfungsinya rangkaian osilator ini. Nilai total kapasitor beban akan mempengaruhi frekuensi getar sebuah kristal. Efek ini juga disebut pulling, dimana perubahan nilai kapasitor beban (atau mode resonansi, seperti disebutkan diatas) dalam rangkaian osilator kristal akan merubah frekuensi getar kristal tersebut.
Pulling dapat digunakan untuk mengatur frekuensi getar kristal, walaupun hanya dalam rentangan yang terbatas. Biasanya, lembaran data kristal mencantumkan nilai nominal kapasitor beban yang tepat untuk mendapatkan spesifikasi frekuensi getar yang tertera.
Resistor R2 berfungsi untuk membatasi tingkat pasokan daya (drive level) kepada kristal. Tingkat pasokan daya yang terlalu rendah akan menyebabkan kristal gagal berosilasi dan sebaliknya, jika terlalu tinggi akan mempengaruhi stabilitas frekuensi kristal atau malah dapat menyebabkan keping kristal menjadi retak.
Kristal jenis HC49 memerlukan tingkat pasokan daya dikisaran 1mW, sedangkan kristal HC49S atau HC49SM memerlukan sekitar 100µW. Semakin besar dimensi kepingan kristal, akan semakin tinggi pasokan daya yang dibutuhkan. Tingkat pasokan daya juga dipengaruhi oleh frekuensi getar, dimana frekuensi getar yang lebih tinggi akan memerlukan pasokan daya yang lebih besar.

Kemasan Kristal

Kemasan KristalKemasan KristalKristal tersedia dalam berbagai bentuk kemasan. Kemasan yang populer adalah HC49 dan HC49S. HC49S mempunyai bentuk tapak yang sama dengan HC49, tetapi kemasannya lebih pendek. HC49S juga tersedia untuk aplikasi SMD (HC49SM), dengan kaki yang ditekuk rata dibawah dasar yang terbuat dari plastik. Kemasan SMD bentuk lain juga banyak tersedia dipasaran.
Perlu diingat bahwa kristal dengan kemasan yang berbeda akan mempunyai karakteristik yang berbeda pula. Hal ini disebabkan karena dimensi dan bentuk keping kristal tergantung kepada besarnya kemasan. Sebagai contoh, kemasan HC49 biasanya berisikan keping kristal yang berbentuk piringan, sedangkan kemasan HC49S, karena lebih pendek, berisikan keping kristal berbentuk persegi panjang.


power-supply-12-volt-praktek-basic

power-supply-12-volt-praktek-basic.




12 v power supply dengan dioda zener


Sirkuit ini di atas menggunakan dioda zener 13 volt, D2 yang memberikan tegangan regulasi. Dengan perkiraan 0,7 Volts transistor akan cut off pada b-e, meninggalkan arus yang lebih tinggi 12,3 Volt output. Rangkaian ini dapat pasokan beban hingga 500 rangkaian mA. Sehingga outputan power supply menggunakkan pembatas tegangan menggunakkan dioda zener dan transistor sebagai pengaman.


Tanpa menggunakkan dioda zener tetapi menggunakkan ic regulator, sekilas bentuknya seperti transistor tetapi berbeda. 7812 untuk regulator 12 v positif dan 7912 untuk keluaran 12v negatif, jangan sampai salah memasangnya.

Pemancar FM

Pendahuluan
Di antara keuntungan FM adalah bebas dari pengaruh gangguan udara, bandwidth (lebar pita) yang lebih besar, dan fidelitas yang tinggi. Jika dibandingkan dengan sistem AM, maka FM memiliki beberapa keunggulan, diantaranya :

Lebih tahan noise
Frekuensi yang dialokasikan untuk siaran FM berada diantara 88 – 108 MHz, dimana pada wilayah frekuensi ini secara relatif bebas dari gangguan baik atmosfir maupun interferensi yang tidak diharapkan. Jangkauan dari sistem modulasi ini tidak sejauh, jika dibandingkan pada sistem modulasi AM dimana panjang gelombangnya lebih panjang. Sehingga noise yang diakibatkan oleh penurunan daya hampir tidak berpengaruh karena dipancarkan secara LOS (Line Of Sight).
Bandwith yang Lebih Lebar
Saluran siar FM standar menduduki lebih dari sepuluh kali lebar bandwidth (lebar pita) saluran siar AM. Hal ini disebabkan oleh struktur sideband nonlinear yang lebih kompleks dengan adanya efek-efek (deviasi) sehingga memerlukan bandwidth yang lebih lebar dibanding distribusi linear yang sederhana dari sideband-sideband dalam sistem AM. Band siar FM terletak pada bagian VHF (Very High Frequency) dari spektrum frekuensi di mana tersedia bandwidth yang lebih lebar daripada gelombang dengan panjang medium (MW) pada band siar AM.

Fidelitas Tinggi
Respon yang seragam terhadap frekuensi audio (paling tidak pada interval 50 Hz sampai 15 KHz), distorsi (harmonik dan intermodulasi) dengan amplitudo sangat rendah, tingkat noise yang sangat rendah, dan respon transien yang bagus sangat diperlukan untuk kinerja Hi-Fi yang baik. Pemakaian saluran FM memberikan respon yang cukup untuk frekuensi audio dan menyediakan hubungan radio dengan noise rendah. Karakteristik yang lain hanyalah ditentukan oleh masalah rancangan perangkatnya saja.

Transmisi Stereo
Alokasi saluran yang lebar dan kemampuan FM untuk menyatukan dengan harmonis beberapa saluran audio pada satu gelombang pembawa, memungkinkan pengembangan sistem penyiaran stereo yang praktis. Ini merupakan sebuah cara bagi industri penyiaran untuk memberikan kualitas reproduksi sebaik atau bahkan lebih baik daripada yang tersedia pada rekaman atau pita stereo. Munculnya compact disc dan perangkat audio digital lainnya akan terus mendorong kalangan industri peralatan dan teknisi siaran lebih jauh untuk memperbaiki kinerja rantai siaran FM secara keseluruhan.

Hak komunikasi Tambahan
Bandwidth yang lebar pada saluran siar FM juga memungkinkan untuk memuat dua saluran data atau audio tambahan, sering disebut Subsidiary Communication Authorization (SCA), bersama dengan transmisi stereo. Saluran SCA menyediakan sumber penerimaan yang penting bagi kebanyakan stasiun radio dan sekaligus sebagai media penyediaan jasa digital dan audio yang berguna untuk khalayak.

Teori Modulasi Frekuensi (FM)
Baik FM (Frekuensi Modulation) maupun PM (Phase Modulation) merupakan kasus khusus dari modulasi sudut (angular modulation). Dalam sistem modulasi sudut frekuensi dan fasa dari gelombang pembawa berubah terhadap waktu menurut fungsi dari sinyal yang dimodulasikan (ditumpangkan). Misal persamaan gelombang pembawa dirumuskan sebagai berikut :

Uc = Ac sin (wc + qc)

Dalam modulasi amplitudo (AM) maka nilai 'Ac' akan berubah-ubah menurut fungsi dari sinyal yang ditumpangkan. Sedangkan dalam modulasi sudut yang diubah-ubah adalah salah satu dari komponen 'wc + qc'. Jika yang diubah-ubah adalah komponen 'wc' maka disebut Frekuensi Modulation (FM), dan jika komponen 'qc' yang diubah-ubah maka disebut Phase Modulation (PM).

Jadi dalam sistem FM, sinyal modulasi (yang ditumpangkan) akan menyebabkan frekuensi dari gelombang pembawa berubah-ubah sesuai perubahan frekuensi dari sinyal modulasi. Sedangkan pada PM perubahan dari sinyal modulasi akan merubah fasa dari gelombang pembawa. Hubungan antara perubahan frekuensi dari gelombang pembawa, perubahan fasa dari gelombang pembawa, dan frekuensi sinyal modulasi dinyatakan sebagai indeks modulasi (m) dimana :
m = Perubahan frekuensi (peak to peak Hz) / frekuensi modulasi (Hz)
Dalam siaran FM, gelombang pembawa harus memiliki perubahan frekuensi yang sesuai dengan amplituda dari sinyal modulasi, tetapi bebas frekuensi sinyal modulasi yang diatur oleh frekuensi modulator.

Pre-Emphasis
Pre-emphasis dipakai dalam pesawat pemancar untuk mencegah pengaruh kecacatan pada sinyal terima. Karena iru komponen pre-emphasis ditempatkan pada awal sebelum sinyal itu sempat masuk pada modulator. Pengaruh kecacatan itu berasal dari differential gain (DG-penguatan yang berbeda) dan differential phase (DP-fasa yang berbeda). Pre-emphasis akan menekan amplitudo dari frekuensi sinyal FM yang lebih rendah pada input.

Dengan penggunaan alat ini ketidaklinearan (cacat) akibat sifat DG dan DP dalam transmisi dapat dikurangi. Nantinya di ujung terima pada demodulator dipasang komponen de-emphasis yang mempunyai fungsi kebalikan dari pre-emphasis.

Pemancar FM
Tujuan dari pemancar FM adalah untuk merubah satu atau lebih sinyal input yang berupa frekuensi audio (AF) menjadi gelombang termodulasi dalam sinyal RF (Radio Frekuensi) yang dimaksudkan sebagai output daya yang kemudian diumpankan ke sistem antena untuk dipancarkan. Dalam bentuk sederhana dapat dipisahkan atas modulator FM dan sebuah power amplifier RF dalam satu unit. Sebenarnya pemancar FM terdiri atas rangkaian blok subsistem yang memiliki fungsi tersendiri, yaitu:
FM exciter merubah sinyal audio menjadi frekuensi RF yang sudah termodulasi
Intermediate Power Amplifier (IPA) dibutuhkan pada beberapa pemancar untuk meningkatkan tingkat daya RF agar mampu menghandle final stage
Power Amplifier di tingkat akhir menaikkan power dari sinyal sesuai yang dibutuhkan oleh sistem antena
Catu daya (power supply) merubah input power dari sumber AC menjadi tegangan dan arus DC atau AC yang dibutuhkan oleh tiap subsistem
Transmitter Control System memonitor, melindungi dan memberikan perintah bagi tiap subsistem sehingga mereka dapat bekerja sama dan memberikan hasil yang diinginkan
RF lowpass filter membatasi frekuensi yang tidak diingikan dari output pemancar
Directional coupler yang mengindikasikan bahwa daya sedang dikirimkan atau diterima dari sistem antena
FM Exciter

Jantung dari pemancar siaran FM terletak pada exciter-nya. Fungsi dari exciter adalah untuk membangkitkan dan memodulasikan gelombang pembawa dengan satu atau lebih input (mono, stereo, SCA) sesuai dengan standar FCC. Gelombang pembawa yang telah dimodulasi kemudian diperkuat oleh wideband amplifier ke level yang dibutuhkan oleh tingkat berikutnya.

Direct FM merupakan teknik modulasi dimana frekuensi dari oscilator dapat diubah sesuai dengan tegangan yang digunakan. Seperti halnya oscilator, disebut voltage tuned oscilator (VTO) dimungkinkan oleh perkembangan dioda tuning varaktor yang dapat merubah kapasitansi menurut perubahan tegangan bias reverse (disebut juga voltage controlled oscillator atau VCO).

Kestabilan frekuensi dari oscillitor direct FM tidak cukup bagus, untuk itu dibutuhkan automotic frekuensi control system (AFC) yang menggunakan sebuah kristal oscillator stabil sebagai frekuensi referensi. Komponen AFC berperan sebagai pengatur frekuensi yang dibangkitkan oscillator lokal untuk dicatukan ke mixer, sehingga frekuensi oscillator menjadi stabil.
Penguat Mikropon dengan Kompresor Tingkat Nada Dinamik
Pada rancangan ini transistor BC547C berlaku sebagai penguat awal sebesar 20 dB untuk sinyal dari mikropon. Tegangan kolektornya mengeset level tegangan DC untuk input op-amp sebesar kurang lebih setengah dari tegangan catu.

Output sinyal audio dari op-amp disearahkan oleh diode D1 dan D2 yang mencatu kapasitor C1 dan C2 berturut-turut positif dan negatif. Beda tegangan antara C1 dan C2 menimbulkan pembuangan muatan yang melewati R3, D3, D4, dan R4. Kapasitor C3 dan C4 mempunyai fungsi ganda yaitu mengurangi riak-riak AC dari arus melalui D3 dan D4 dan menyediakan pembumian (ground) untuk pembagi tegangan yang terdiri atas R5 dan impedansi dari dioda D3 dan D4 ( paralel ). Impedansi pada kedua dioda tersebut bergantung pada besarnya pembuangan muatan oleh kapasitor C1 dan C2 yang melewati kedua dioda ini. Semakin besar arus pada rangkaian dioda, semakin kecil impedansinya, dan berati semakin kecil pula tegangan input untuk op-amp pada pin noninverting (positif).

Pada saat sinyal voltase di input op-amp kecil, ketidaklinearitasan dioda menciptakan distorsi yang kecil, sebesar 2,5 V p-p di output op-amp.

Pemancar FM 12 Watt
(Bagian II)

Untuk dapat merakit pemancar yang bekerja dengan baik diperlukan SWR Meter, Power Meter, Dummy Load dan Frekuensi Counter. Untuk kalangan penggemar elektronika SWR Meter, Power Meter, Dummy Load dan Frekuensi Counter mungkin terlalu mahal untuk dibeli. Meskipun demikian peralatan ini dapat dibuat sendiri dengan biaya yang sangat murah. (Pembuatan Power Meter dan Dummy Load akan dibahas secara terpisah pada bagian III).
SWR Meter & Power Meter

Pada saluran transmisi yang tidak match selain gelombang datang mengalir pula gelombang pantul. Gelombang datang arahnya dari sumber ke beban (dari pemancar ke antena) sedangkan gelombang pantul dari arah yang sebaliknya (dari antena ke pemancar). Untuk mengukur daya gelombang-gelombang tersebut diperlukan Power Meter. Biasanya pada Power Meter terdapat dua skala, satu untuk daya datang dan satu lagi untuk daya pantul, skala untuk daya pantul lebih kecil dari skala daya datang.

SWR Meter (Standing Wave Ratio Meter – pengukur perbandingan gelombang tegak) digunakan untuk mengukur perbandingan gelombang datang dan gelombang pantul. Dengan kata lain SWR Meter digunakan untuk mengukur seberapa match sebuah sumber dengan beban.  Prinsip kerja SWR Meter didasari Power Meter. Jika pada suatu pengukuran hanya terdapat Power Meter maka SWR dapat dihitung dari daya datang (Pf) dan daya pantul (Pr) dengan rumus sebagai berikut :

SWR = (ÖPf + ÖPr)/(ÖPf - ÖPr)

Dari rumus tersebut, pada keadaan match (Pr = 0) akan didapatkan SWR = 1. Untuk keadaan yang tidak match akan didapatkan SWR > 1. Untuk keadaan yang paling buruk dimana semua daya datang dipantulkan kembali (Pf = Pr) akan didapatkan SWR = tak hingga.
Dummy Load

Agar daya bisa dipancarkan semaksimal mungkin, impedansi output dari penguat daya tingkat akhir harus sama dengan impedansi karakteristik saluran transmisi dan impedansi dari antena. Untuk itu diperlukan penalaan pada matching network untuk menyamakan impedansi.

Impedansi dari antena sangat tergantung pada frekuensi. Sedangkan impendasi dari saluran transmisi sama dengan impedansi karakteristik saluran jika panjang saluran transmisi tersebut adalah tak terhingga. Sehingga antena dan saluran transmisi tidak dapat dipakai sebagai acuan untuk menala matching network. Sebagai gantinya diperlukan sebuah beban yang diketahui impedansinya dengan pasti sebagai acuan (Dummy Load), yang harus bebas dari pengaruh frekuensi dan dapat menangani pembuangan daya yang besar (merubah semua daya datang menjadi panas). Impedansi Dummy Load biasanya 50 atau 75 Ohm. Induktor dan kapasitor adalah komponen yang memiliki impedansi yang tergantung frekuensi. Resistor murni tidak terpengaruh frekuensi, meskipun pada kenyataannya resistor tidak hanya bersifat resistif tetapi mempunyai sifat induktif dan kapasitif parasit meskipun kecil.

Dummy Load dapat dibuat sendiri dengan memasang paralel beberapa resistor sehingga didapatkan resistansi dan daya yang diinginkan. Resistor karbon dan resistor film mempunyai induktor parasit yang minimal sehingga banyak dipakai untuk membuat dummy load. Resistor karbon harganya lebih murah dan bisa didapatkan dengan daya lebih besar dibandingkan resistor film.

Memparalelkan beberapa resistor, selain untuk mendapatkan daya besar, dimaksud pula memperkecil induktansi liar dari resistor-resistor tersebut. Sebagai contoh dapat dipakai resistor karbon 300 Ohm / 2 Watt sebayak 6 biji yang dibubungkan secara paralel, untuk mendapatkan Dummy Load dengan daya 12 Watt dan impedansi 50 Ohm (gambar 3).





Gambar 3
Skema Dummy Load
Frekuensi Counter

Frekuensi Counter adalah sebuah alat untuk mengetahui besarnya frekuensi dari sebuah sinyal. Frekuensi Counter sifatnya hanya tambahan dan dapat digantikan dengan radio penerima biasa. Untuk hasil yang lebih baik dapat dipakai radio dengan tuning digital.

Pemancar FM 12 Watt
Pemancar FM yang dibahas pada artikel ini adalah modifikasi dari rangkaian Pemancar FM yang ada di pasaran (tipe S-083 dari Saturn). Rangkaian S-083 hanya menghasilkan daya kurang lebih 1 Watt. Dengan sedikit modifikasi, penyederhanaan dan penambahan booster akan didapatkan daya akhir 12 Watt. Rangkaian S-083 terdiri atas 3 bagian, yaknik bagian osilator, Penyangga tingkat pertama (Buffer 1) dan Penyangga tingkat kedua (buffer 2),  lihat di Gambar 4  (Komponen yang diberi tanda * adalah bagian yang dimodifikasi )..

Setelah dicoba, osilator S-083 hasilnya cukup memuaskan, selain stabil osilator tersebut menghasilkan sinyal yang kuat. Karena itu bagian osilator dipakai tanpa modifikasi.  Transistor di Tingkat penyangga pertama (Buffer 1) yang semula  menggunakan C2053, diganti dengan transistor C930, tipe dengan harga yang jauh lebih murah dan mudah diperoleh dipasaran. Untuk keperluan itu nilai R6 diganti menjadi 10K, untuk memberi bias yang sesuai bagi transistor C930.

Kapasitor 33pF pada kaki kolektor transistor penyangga diganti dengan trimmer C8 bernilai 5-60pF untuk mempermudah penalaan. Transistor di Tingkat penyangga kedua (Buffer 2) yang semula C710 diganti pula dengan C930, dan kapastor pada kolektornya juga diganti dengan trimmer C11 bernilai 5-60 pF. Pada keluaran tingkat kedua diberi tambahan induktor dan kapasitor yang berfungsi sebagai penyesuai impedansi, sehingga Impedansi keluaran dari penyangga tingkat akhir yang kurang lebih 380 Ohm dirubah menjadi 50 Ohm.



Gambar 4
Skema rangkaian Exciter

Saat merakit sebaiknya jangan tergesa-gesa dengan mengerjakan langsung secara keseluruhan, tapi  kerjakan tiap bagian agar adanya kesalahan dapat diketahui lebih awal.

Bagian pertama yang dikerjakan adalah osilator, setelah selesai dirakit dapat langsung dicoba, dengan cara menyalakan radio FM pada gelombang yang kosong dan atur volume radio sehingga suara desis terdengar jelas (akan lebih mudah jika dipakai radio yang mempunyai indikator tuning). Putar inti dari koker (L1) kekanan sampai maksimal. (Dengan memutar koker kekanan frekuensi yang dihasilkan osilator makin rendah.) Nyalakan pemancar FM, putar inti koker kekiri sampai desis pada radio FM hilang atau sampai indikator tuning menyala. Jika didapatkan sinyal yang kuat dan stabil, osilator dari pemancar ini telah bekerja dengan baik.

Bagian selanjutnya dapat mulai dirakit, setelah selesai dirakit, hubungkan rangkaian exciter (Gambar 4) seperti diagram Gambar 5. Nyalakan catu daya dan putar kedua trimmer (C8 dan C11) pada penyangga secara bergantian sampai didapatkan daya paling besar dan SWR paling kecil. Kalau rangkaian exciter bekerja dengan baik, akan didapatkan daya kurang lebih 0,25 Watt.


Gambar 5
Diagram blok pengetesan exciter

Sampai tahap ini exciter sudah siap pakai. Untuk mendapatkan daya yang lebih besar lagi dapat dapat ditambahkan rangkaian booster 12 Watt, sehingga akan jarak jangkauan pancaran meningkat sampai 7 kali lipat.



Gambar 6
Skema rangkaian booster

Rangkaian booster 12 Watt pada Gambar 6, terdiri dari dua tingkat penguat transistor yang masing-masing bekerja pada kelas C, masomg-masing input dan output penguat transistor ini diberi rangkaian penyesuai impedansi.

Penguatan tingkat pertama memakai transistor C1970. Rangkaian  Penguatan ini mempunyai penguatan daya 9,2dB (8 kali), sehingga dari exciter berdaya 0,25 W seharusnya bisa dihasilkan daya 2 W. Pada kenyataannya dari keluaran penguatan tingkat pertama ini hanya menghasilkan daya 1,75 Watt, hal ini disebabkan adanya kerugian dari rangkaian matching network.

Penguatan tingkat kedua memakai transistor C1971. Rangkaian Penguat ini mempunyai penguatan daya 10dB (10 kali). Sehingga daya dari tingkat pertama yang 1,75 W bisa diperkuat menjadi 17,5 W. Pada kenyataannya daya dari penguatan tingkat kedua hanya mencapai 12,5 Watt. Hal ini disebabkan adanya kerugian dari rangkaian matching network dan keterbatasan dari transistor C1971.

Karena panas yang dihasilkan kedua transistor cukup besar maka jangan lupa memasang pendinginan yang cukup.

Setelah booster selesai dirangkai selanjutnya booster dapat dicoba dan ditala, dengan merangkai exciter, booster, SWR & Power Meter dan Dummy Load seperti Gambar 7. Sebelum catu daya dinyalakan, semua trimmer pada booster diputar pada posisi tengah. Pastikan catu daya yang dipakai dapat memberikan arus lebih dari 3 Ampere. Amati power meter. Power meter seharusnya menunjukkan daya beberapa watt. Putar trimmer pada booster dimulai dari bagian input sampai didapatkan daya paling besar. Ulangi beberapa kali. Seharusnya akan didapatkan daya sampai 12W.




Gambar 7
Diagram blok pengetesan booster

Dari pengukuran didapatkan kebutuhan arus adalah 2,2 Ampere dan daya maksimal yang dapat dicapai adalah 12,5 Watt. Daya yang terlalu besar tentu saja akan memperpendek umur transistor tingkat akhir. Untuk itu disarankan untuk menurunkan daya keluaran dengan menurunkan tegangan supply menjadi 12 Volt.